
A deep-learning inverse Hessian preconditioning for iterative least-squares reverse time migration

Introduction

Least-squares reverse time migration (LSRTM) provides true amplitude and high-resolution reflectivity
images from pre-stack seismic data (Nemeth et al., 1999). Conventional applications formulate LSRTM
as a linearized waveform inversion problem where the Hessian operator, related to the seismic resolution
and subsurface illumination, is implicitly inverted through iterations. However, due to limitations in the
forward modelling operator, noise in the data and a non-trivial null space, iterative LSRTM presents
slow convergence, translating into high computational costs.

Multiple formulations have been proposed to alleviate the computational aspect of LSRTM in both data
and image domains (e.g. Tang, 2009; Liu et al., 2013). This study presents a novel deep-learning-based
preconditioning strategy for LSRTM consisting of two distinct building blocks. The first component
estimates the effect of the inverse Hessian by training a convolutional neural network (CNN) from pairs
of migrated images. For this, we introduce a convolutional autoencoder (CAE) with a 1D lower- rank
representation to benefit from its dimensionality reduction capabilities later. The technique only requires
paired training samples obtained from the available seismic data and the action of the physical operators,
circumventing the need for a representative dataset of ground-truth reflectivity labels. After training the
CAE that approximates the inverse Hessian, the second component solves LSRTM directly on a lower-
dimensional space by integrating the decoder in the optimization problem through a (non-linear) change
of variables. Since the decoder learns to synthesize model realizations from low-dimensional represen-
tations of the discrepancy between high-fidelity and low-fidelity images, it has a preconditioning effect
that can be used to enhance model features related to images with reduced artifacts and more illumi-
nation balance. Combining the deep-learning inverse Hessian with LSRTM potentially overcomes the
resolution limitations of single-iteration matching filtering. Also, given the reduced number of inferred
parameters and the fast generation of enhanced model realizations, the deep-learning parameterization
significantly improves the LSRTM inversion performance.

Method

Defining L and LT as the demigration and migration operators, we can reproduce the effect of the
Hessian by the sequence

LT Lm1 = m2, (1)

with m1 = LT dobs denoting the migration image, and dobs the observed data. As m1 and m2 are known,
a crude approximation of the inverse Hessian can be found by defining a non-stationary convolutional
operator P ≈ H−1 and minimizing the cost function E(P) = ||m1 −Pm2||22 +λR(P), where R(P) is a
regularization term and µ is the trade-off parameter. After solving for P, we obtain an improved image
through a single-step filtering, m̂ = Pm1, or by incorporating P into an iterative scheme to precondition
the data misfit gradient at each iteration.

Alternatively, we propose parameterizing the sought preconditioning operator by the weights of a deep
CAE. A CAE comprises the deterministic pair (Eφ ,Dθ ) of CNNs, where Eφ : Rn → Rh denotes the
encoder network parameterized by weights φ , Dθ : Rh → Rn corresponds to the decoder network pa-
rameterized by weights θ , and h is the latent space dimension. For n> h, Eφ is trained to encode samples
x ∈ Rn in the lower-dimensional space Rh such that Dθ can reconstruct an estimated sample x̂ from its
latent representation z ∈ Rh through a reverse mapping. In this case, the latent representation vector
of fixed dimensions z = Eφ (x) is an informational bottleneck, which induces the CAE to capture the
most important features of the input sample. Generally, CAEs are trained with unsupervised algorithms
so that the output samples approximate the inputs based on the latent representation. The inputs are
selected from a representative training dataset, which might not be available for computationally con-
suming tasks such as LSRTM, where the true reflectivity is unknown. We partially overcome this issue
by relying on the migration and re-migration approach. Based on equation 1, we re-write the inverse
Hessian approximation problem as m1 =Dθ (Eφ (m2)), and establish a supervised training strategy given
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by

E(φ ,θ) =
1
N

N

∑
i=1

||mi
1 −Dθ (Eφ (mi

2))||22 +β ||θ ||22 +λ ||φ ||22, (2)

with µ,λ > 0. Like the linear matching filtering procedure (Guitton, 2004), this training strategy en-
forces the CAE to learn a filtering task as a function of the migrated and re-migrated paired samples.
To have access to multiple realizations of m1 and m2 within the same acquisition setup, we build our
training dataset with random crops of overlapping patches from the volumes of unstacked images m̃1
and re-migrated images m̃2, generated by a source extended imaging condition (Huang et al., 2016).

After the training stage, we use the decoder as a non-linear synthesis operator to solve data-domain
LSRTM in the latent space. This amounts to formulating the LSRTM problem as:

J(z) =
1
2
||LDθ (z)−dobs||22 (3)

ẑ = argminz J(z) (4)
m̂ = Dθ (ẑ), (5)

where, m̂ is the final inverted reflectivity. Because we split the sought reflectivity model in Np overlap-
ping patches of pre-defined size, we re-write ẑ = {ẑi}

Np
i=1. For simplicity, before performing the forward

modelling on the full image, we attach an unpatching operator as the last layer of the decoder that as-
sembles individually decoded patches {Dθ (zi)}

Np
i=1 back together using weighing functions (Claerbout

and Fomel, 2008). We employ the L-BFGS solver (Nocedal, 1980), which provides fast convergence
and additional information about the local curvature of the new cost function to steer its search direction
along the variable space. We rely on the decoder as a preconditioning operator to produce high-fidelity
images relatively similar to those from the target distribution. To avoid convergence to a useless local
minimum, we set z0 = Eφ (m1), which produces stable results. Furthermore, m1 is available from the
training stage (through a stacking operator acting on m̃1), so initializing the inversion with the encoded
adjoint image does not incur in additional computational costs.

Numerical experiment

We aim to find the reflectivity model of a layered medium with slightly dipping reflectors (Figure 2d).
The experiment simulates a fixed spread acquisition of 65 sources and 128 receivers. The source and
receiver spacings are 24 m and 12 m, respectively. The first source and receiver are at x = 0 m, and all
sources and receivers are at z = 0 m depth. The spatial grid interval is 12 m in both horizontal and depth
dimensions. The seismic source is a Ricker wavelet of 20 Hz (dominant frequency), and the recording
time is 1.8 seconds sampled at 1 ms. In this example, the observed data dobs is free of noise, and our
migration velocity is accurate.

In the training stage, we define a fixed patch size of 64× 64 with a stride of 8× 64 grid points. The
total number of patches is 2304. Figures 1a and 1b show several randomly chosen patches from the
bank of labels m̃1 and inputs m̃2, respectively. As expected, the patches of re-migrated images differ
significantly from the m̃1 patches, presenting much higher amplitude imbalance and more migration-
related artifacts. For the deep autoencoder architecture, we employ the ResNet CAE model presented in
Ravasi (2021), which includes multiple residual blocks as the backbone of the network, each composed

Figure 1 Training dataset. Random selection of paired samples: (a) Labels from m̃1 (high-fidelity
samples). (b) Their corresponding input patches from m̃2 (low-fidelity samples). All the images are
plotted using the same amplitude range.
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of two 2D convolutional layers (a sequence of multiple 2D convolutional filters, a batch normalization
operator, and a leaky ReLU non-linear activation) and a skip connection over the two layers. To slightly
improve performance, we concatenate two consecutive residual blocks on each level, producing a deeper
architecture but retaining the same complexity level (He et al., 2016). We also change the number of 2D
filter coefficients from 3×3 to 5×5 to expand the receptive field of the convolution kernel. At least for
the following example, we obtain a moderately increased performance with these modifications regard-
ing training stability and prediction quality. The input shape is hard coded to the dataset dimensionality
(patch size), and the dimension of the latent space is fixed to h= 300. We use the Adam method (Kingma
and Ba, 2014) to optimize the network parameters by minimizing equation 2 with 50 epochs, batch size
of 256, a learning rate of 1e−3, and β ,λ = 1e−5.

Applying the patching technique with the same configuration as in the training stage, we split the sought
reflectivity model into 18 patches. This corresponds to a dimensionality reduction factor of approxi-
mately 3 compared with the original model dimensions. First, we only inverted the central shot located
at the central part of the model. The result is shown in Figure 2c. We also run the inversion without
the decoder synthesizer for comparison (Figure 2b), showing that the imaging enhancement we obtain
relies mostly on the action of the decoder. Most migration artifacts have been effectively reduced in the
decoder-based inversion, and the image still presents resolution improvements compared to the adjoint
image (Figure 2a). Figure 3 shows the normalized objective function versus the number of iterations.
Although both inversions converge to a similar value, the decoded inversion achieves convergence in
fewer iterations, translating into improved computational performance.0.0 1.0 2.0
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Figure 2 Image space results for the inversion of the central shot. (a) RTM image. (b) L-BFGS result.
(c) Proposed method. (d) True reflectivity.
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Figure 3 Convergence of the L-BFGS algorithm (with and without the decoder synthesizer) versus the
number of iterations for the central shot inversion.

Finally, To show the method’s potential in dealing with sparse acquisitions, we limit the multiple shot
inversion to only Ns = 10 shots evenly spaced at the surface. Figure 4 shows the result of the stacked
inversion. Naturally, stacking is effective in suppressing interferences observed in single-shot inversions.
We still notice a substantial improvement in the decoded inversion over the traditional LSRTM result.
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Figure 4 Image space results for the inversion of 10 shots. (a) L-BFGS. (b) Proposed method.

Conclusions

We developed a fast imaging framework that relies on deep learning and data domain inversion to recover
an improved subsurface reflectivity model. A preliminary numerical example demonstrates the potential
of the method. Compared to other supervised deep-learning techniques that need paired samples of
ground-truth labels and initial reconstruction models, the proposed method does not use the former.
The training stage does not need complicated pre-processing and requires minimal user interaction. It
is also relatively cheap since we are simulating the effects of the Hessian operator at the cost of only
one migration/re-migration sequence, equivalent to one iteration of conjugate gradients. Moreover, the
deep synthesizer operator used in the inversion stage is similar in spirit to preconditioning schemes in
linear inverse problems, in which the preconditioner promotes stable features in the model, improving
the eigenvalue distribution of the forward operator and increasing the rate of convergence.
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